Inflection points and the power spectrum

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflection Points, Extatic Points and Curve Shortening

As the name suggests, Curve Shortening is a gradientflow for the length functional on the space of immersed curves in the surfaceM. One can therefore try to use Curve Shortening to prove existence of geodesics by variational methods. In my talk at S’Agarro I observed that geodesics always are curves without self-tangencies, and recalled that the space of such curves has many different connected...

متن کامل

Inflection points and singularities on C-curves

We show that all so-called C-curves are affine images of trochoids or sine curves and use this relation to investigate the occurrence of inflection points, cusps, and loops. The results are summarized in a shape diagram of C-Bézier curves, which is useful when using C-Bézier curves for curve and surface modeling.  2003 Elsevier B.V. All rights reserved.

متن کامل

Transformed density rejection with inflection points

The acceptance-rejection algorithm is often used to sample from non-standard distributions. For this algorithm to be efficient, however, the user has to create a hat function that majorizes and closely matches the density of the distribution to be sampled from. There are many methods for automatically creating such hat functions, but these methods require that the user transforms the density so...

متن کامل

Inflection points of coherent reliability polynomials

Examples of coherent reliability polynomials with more than one inflection point are given. They are created by examining the structure of a reliability polynomial using a convex basis.

متن کامل

Identification of inflection points and cusps on rational curves

Using homogeneous coordinates, a rational curve can be represented in a nonrational form. Based on such a nonrational representation of a curve, a simple method to identify inflection points and cusps on 2-D and 3-D rational curves is proposed. © 1997 Elsevier Science B.V.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2013

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.87.083518